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In 1982 Bobylev[A.V. Bobylev, Sov. Phys. Dokl27, 29 (1982] made a linear stability analysis of the
Burnett equations and showed that beyond a certain critical reduced wave number there exist normal modes
that grow exponentially, concluding that the Burnett equations are linearly unstable. We have partially ex-
tended his analysis, originally made for Maxwellian molecules, for any interaction potential and argue that his
results can be reinterpreted as to give a bound for the Knudsen number above which the Burnett equations are
not valid.

PACS numbgs): 05.20.Dd, 47.26-k, 51.10:+y

The question regarding the stability of the solutions to thein the case of the time dependent code, or to a bifurcation for
equations of hydrodynamics for given initial and boundarya Mach number of value=2.69 in the stationary situation
conditions has been of utmost importaridé. In particular, [9]. Without entering here into a detailed analysis of these
since hydrodynamic equations for dilute gases are obtainelg¢atures, which will be soon published, the question is if the
from the Boltzmann equation by seeking, either solutions irfésults obtained by Bobylev can be sustained for more gen-
power series in terms of Knudsen's parameter through th@ral models and if affirmative can they be casted in terms of
Chapman—-Enskog method, or as truncated approximatior’fS”Udsen’S parameter. This means, can we find a crl_tlcal
using Grad’s moment method, and in both cases the transpof@lue for Knudsen's parameter beyond which the solutions
coefficients are in principle obtainable for given intermolecu-t0 the Burnett equations are unstable? o
lar potentials, the validity of their solution becomes an im-  The purpose of this communication is to show that this is
portant question. In 1982 Bobyl€i2] claimed that for the indeed the case and further we will see that the analysis
case of Maxwellian molecules, whereas the Navier—StokeBartially holds true independently of the interatomic poten-
approximation yields equations which are stable agains'fﬂaL This answer prowd_es thenarather clear cut significance
small perturbations, for the equilibrium state characterized© the gradient expansion in the Chapman—Enskog method
by constant temperatureT), constant mass densitypg),  [10] of solving Boltzmann's equation. _
and zero hydrodynamic velocitwé& 0), this is not the case To pursue our objective we start from the conseryaﬂon
for the next approximation in Knudsen’s parameter, namelygquations which, for the longitudinal flow(r,t) =u(x,t)i,
for the Burnett equations. In fact he showed that small perare written as
turbations to the equilibrium solution which are periodic in
the space variable with a wavelength smaller than some criti- ap(x,t)
cal length are exponentially unstable. This fact is now re- ot
ferred to in the literature as Bobylev's instability.

On the other hand, the Burnett approximation of hydro- au(x,t) au(x,t) 1 9P,
dynamics has been recently shown to provide substantial im- (x,t) =— , 2

Y Jt X p(X,t) ax
provement on many features of the flow occurring in several
problems in hydrodynamics. This is the case for a plane Poi-
seuille flow[3], and other44]. But perhaps the most spec- MJFU
tacular of them arises in the calculation of the profiles of a  Jt
shock wave at large Mach numbers. There, it has been shown
by many workers in the field that the Burnett approximation i &qx(x,t)) &)
substantially improves the accuracy of the different profiles X '
in the shock wave when compared with the direct Monte
Carlo simulationg5] or molecular dynamic§6]. Neverthe- wheremis the masskg Boltzmann’s constan®,,(x,t) the
less, in the study of this problem, it was found that the soluxx component of the pressure tensor apdx,t) the x com-
tions of the Burnett equations do exhibit certain “instabili- ponent of the heat fluxp(x,t),u(x,t), and T(x,t) are the
ties” that have been associated to Bobylev's instabjlit], local values of the mass density, the velocity and the tem-
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perature, respectively. The componegntand z of momen-  where 7 is the shear viscosity evaluated at the temperature

tum conservation give no additional information. of the equilibrium state. By means of this transformation and
The constitutive equations fd?,, andq, contain the hy-  substitution of the constitutive equatio@ and(5) into Egs.

drostatic pressure, the usual Navier—Newton—Fourier contrit1)—(3) we obtain that to first order ia,

butions and the Burnett terms, which correspond to the sec-

ond order in the gradients expansion. The pressure tensor is ap’
) + _
given by[10] s =0, (8)
pkeT 4 au 2 , m (au)
xx = Tox " 3917 au d U’ 2w, 3%p’
m 3 ﬂx 3 pkgT\ dx L T 42 20°p
o’ Js 3 g2 3 4S8
2 7 { 1 (é’p) 19p aT
+ — S
3% 2pT IX p IX IX 2( )(931" ©
— Al Wy3—wy)—/——,
1 8% T 14(ou\2 378 T s
p2ox% ax% 9 \ax
2 azT 2 m |kgT dp dT s 2 +f(?2T, 4(0 0 )agu’ (10
7 B! 79p ., T 2 e 5 olbaT )/,
MEREPS S T w2tz pk TZ{ m dx ox ot 37 os* 9 95’
PkB JT 2 7? [T 2 ’m/ au)? wheref =2m\,/3kg 7, is the Eucken factor ankl, the ther-
(?x) + §w5p_Tz(8_X) + §wem &_x) mal conductivity at the temperatuiig. The first Sonine ex-

pansion gives =5/2 [10], a result which is independent of
4 the interatomic potential and is in very good agreement with
the experimental dafd.0]. We shall use this value from now
on. Also, Eqgs.(8)—(10) are valid for any interatomic poten-
tial.
Let us now introduce normal modes, namely,

and the heat flux, to the same approximation, is

aT 619> 0udT 8 7% dudT

D= M T a_xa_x_§azﬁa_xa_x
2 P2 2 KeT dp _ pkg T} du p'(s,t)=pexpQt’ +iks), T'(s,t')=TexpQt' +iks),
_5027_ 303p2kBT m ax m ax)ox ~ .
u’(s,t’)=uexpQt’'+iks), Im(k)=0, (12
2 7% du 7 dT du
300 Gt 205 s o (5 and substitute in Eqs8)—(10). This leads to a system of

three equations for variablgs T, andu whose determinant

where 7 is the shear viscositys the thermal conductivity must be set equal to zero, a condition that guarantees the
and thew's and #'s are the Burnett coefficients. They have existence of a nontrivial solution. This leads finally to the
been explicitly calculated for hard spheres as well as forquation,
Maxwell moleculeq10].

Equations(1)—(5) are the complete set in the Burnett ap- 10
proximation that we want to study. They have as a solution 18Q2°+690%k?*+300k*+ 189k4[§— 5(04— 02+ 03
the equilibrium state characterized bwy=0, p=pg

= constant and = Ty= constant. We now wonder if this so- 2w, 5 4

lution is stable under small perturbations. In order to study —wg)t 3 |t 3 (wsm w2) (04— 02) QK+ 45K

the stability conditions the system is perturbed, in the follow-

ing manner: +30w,k®=0. (12
T(X,t)=To[1+€T'(x,1)], Since the previous dispersion relation depends only on the

magnitude ofk we will restrict the forthcoming discussion
p(X,t)=po[1l+ep'(X1)], (6)  for positive values ok.
For the remaining part of the analysis we do require the
kT values of the transport coefficients so we shall use those

u(x,t)= eu’(x,t) computed for Maxwellian molecules and for rigid spheres. In

the former cas¢10],

where all primed quantities are dimensionless and different s _ _ _
orders ine indicate the order of approximation. We also 02=7%, 02=3, w2=2, w3=3, (13
define a dimensionless length) and time ') in terms of

the mean free path), namely and Eq.(12) reduces to

T 1803+ 6902k + 970 k* — 140 k8 + 300 k2 + 45k*+ 60k
|— 7o s=§ t,:POB 0, R
kBTO I ! 7]Om ! :0 (14)
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FIG. 1. Real parts of the eigenvaluésrcles as function ofk
for the Maxwell model.

Equation(14) differs from the result obtained by Bobylev
[see Eq.(6) in Ref. [2]] in that the last term is four times
larger. However substitution of E¢13) into Egs.(8)—(10)
reproduces the results given by Boby[eee Egs(3) and(4)
in Ref. [2]]. It is also pertinent to mention that the corre-

sponding equation for the Navier—Stokes approximation is

easily obtained from Eq15) settingw,= wz= 0,=6,=0 to
yield
1803+ 6902k?+ 300 k% + 600 k*+45*=0, (15

which is also given by Bobylev. Also, for rigid spheres we
have

0,=5.821875,0,=2.418,w,=2.028, w;= 2.418,

(16)
and the polynomia({12) reduces to
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FIG. 2. Real parts of the eigenvaluésrcles as function ofk
for the rigid sphere model.
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1803+ 6902k?+ 108.44T k% — 7.080 0&2 k8 + 300 k?
+45k*+ 60.84°=0. (17

If we now analyze the real part of the roots of E¢K4)
and(17) we obtain the behavior shown in Figs. 1 and 2. This
clearly indicates that there exists a critical reduced wave
number K.), such that fork>k_. there is a root whose real
part is positive thus implying the existence of an instability
at k.~2.5 andk,~3.65 for the Maxwell model and rigid
sphere model, respectively.

To interpret this result we recall that Knudsen’s number is
defined as

I
n_E’

K (18

whereL is a characteristic length of the phenomena under
consideration. The main point here is the selection of the
characteristic length appropriate to the behavior of normal
modes. Thus for perturbations in the density, velocity or tem-
perature, this implies that

/i

a1’

’ -1_
/Ip L=l
/|u’|.

However all definitions of. are equivalent and equal kdl,

so thatC,=k and the local values of the Knudsen’s number
become global quantities. This implies that Bobylev’s results
may be interpreted alternatively by stating that Burnett equa-
tions are stable against small perturbations provided that
Knudsen number is smaller th&p. This result may surprise
some readers since presumably the Chapman—Enskog solu-
tion of Boltzmann’s equation is valid only iK,<1, how
small is never stated. Here however, as in Bobylev's analy-
sis, we have not been concerned with the convergence of the
series. On the other hand, as pointed out by Boby@Ey
since the Burnett equations are nonlinear it is to be expected
that their nonlinearity leads to the appereance of a finite
number of harmonics for finite times. Thus even if modes
with k>k. are not present one may expect that the nonlin-
earities will generate them and so one may be tempted to
conclude that our interpretation is incorrect. We have done
calculations to second order in the perturbatian(x,t)
=kgTo/m[eu’(x,t) + €2u”(x,t)]) and will consider only

the case of the hydrodynamic velocity since the results for
the density and the temperature are analogous. Assuming
that the first order perturbationu() corresponds to a single
mode we find that the perturbatiari(x,t) is of the form,

L~ t=

ap’
X

or L7 1=

ou’
X

u”(x,t) =ugexp(2Qt’ + 2iks), (19
whereug is a constant andl and () are determined from the
linear hydrodynamic stability analysis. So, Bobylev’'s remark
that higher harmonics are generated by nonlinerities is true
but if the real part of) is negative, which is valid provided
that k<k. as shown in Figs. 1 and 2, then the second har-
monic does not give rise to an instability. The same argu-
ment can be used to show that the higher harmonics of the
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form expQt’ +niks), wheren is a positive integer, are magnitude estimation; under standard conditions, the mean

stable ifk<k.. A more detailed analysis is beyond the scopefree path is about 10 cm [10], for k=10 it follows thatL
of this paper. is of order 108 cm which is about the atomic diameter, a

Bobylev's instability and other problems associated withdistance for which the description in terms of macroscopic
the Burnett equations, or with the Chapman—Enskog exparfiuantities(continuum descriptionis completely unreliable.
sion, has lead some workers in the field to search for other The main result of this work is to point out that the hy-
ways of dealing with the gradient expansion such as reguladrodynamic instability found by Bobyle)?] does not come
ization techniques proposed by Rosefial] and the partial as a surprise if we realize that the Burnett equations are
summation techniques as have been used by Gorban ag¥pected to be valid for small Knudsen numbers. When this
Karlin and other§12—14. Other authors have considered a condition is not satisfied then there is agpriori reason to
subset or a superset of the Burnett equat[@hg] so that the ~expect that the Burnett equations remain valid and their in-
corresponding equations are stable under small perturbationgfability may be interpreted as a manifestation of the fact that
or have used macroscopic arguments to derive Burnett likwe are outside of their range of validity. In fact, the value of
equations that are free from some problems associated witk gives a quantitative criterion about the validity limits.
their origin as power series expansidis).

On the other hand, the Navier—Stokes equations are lin- F.J.U. thanks the Physics Department of the University of
early stable for all Knudsen numbers as follows from Eg.Newcastle where most of his contribution to this work was
(15 [2], while this is a nice property of them it would be done, and to Universidad Autonoma Metropolitana and
naive to claim that their description is correct for all Knud- CONACYT for providing funds for his stay at Newcastle
sen numbers as is clear from the following simple order ofupon Tyne.
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